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Compounds incorporating diarylmethine stereogenic centers are

- - A OH
found in natural productsand a number of notable pharmaceuticals, 1,4-addition )Ai/CHO 1,2-addition 1
such as tolterodine and sertralih¢lowever, the stereoselective a Ar! ¢ Ar Ar
preparation of building blocks leading to these is challenging, 1 3 5
particularly when little differentiates the two arenes electronically b OH avs b; regioselectivity
or sterically. This is especially problematic in cases where the only |—> - Ar1/\)\A 2 avs c; chemoselectivity
differentiation occurs at the para position of the aromatic groups. 1,2-addition 4
T_he current stat(_a of the ar_t for the preparatiqq of nonracem_ic 3,3 Figure 1. Possible reaction pathways.
diarylpropanals is the amine-catalyzed addition of aromatic nu- _ _ _ S
cleophiles to 3-substituted acrolein derivatives{82% ee) While Table 1. Ligand Screening and Reaction Optimization
this approach performs well with electron-rich nucleophiles, MeO. _Me MeO.__Me
eIectron-p(_)or arpmatics do nqt furnish 1,4-addition products pecause R 6; R = allyl R 8;R = allyl
they are insufficiently reactive. The Rh(l)-catalyzed conjugate 7 7; R = benzyl 7 9; R = benzyl
addition of arylboronic acidsoffers the promise of a general Mé Ph Me -Bu
solution for the synthesis of this important class of compotinds =~~~ T lgand 33 mol%)  OMe
and is less sensitive to the electronic nature of the arene nucleophile. . l[\ARh(()(E:ZTl4)éCgf-I (1-52 rgol%)_
We envisioned that the 1,4-addition to cinnamaldehydes with both Rt (8_5 ggﬁiv') equiv)
electron-rich and -poor arylboronic acids would provide facile ph Xx-CHO pory—
access to valuable intermediates, such3a®q 1). Herein, we 50°C, 75 min Ph - CHO
3.3% diene ligand
1.5% [RQg;ﬁH4)ZCI]2 Ar2 entry ligand solvent yield (%)2  ee (%)
At -CHO + AB(OH), AN CHO () 1 6 dioxane/HO (10:1) 43 47
1 2 3 (89-93% ee) 2 7 dioxane/HO (10:1) 45 60
3 8 d@oxane/l-io (10:1) 50 83
document the asymmetric addition of arylboronic acids to cinna- g g g'%ﬁ?ﬁzlg(()lg%l) gg gg
maldehyde derivatives to_give optically active 3,3-diaryl-substituteq 6 9 MeOH/H,0 (1('); 1) 80 92
aldehydes. The method is noteworthy on a number of grounds: it 7 phosphoramidife  MeOH/H,O (10:1) 19 56
provides access to building blocks that are otherwise not readily 8 (R)-BINAP MeOH/H0 (10:1) 33 —89

accessible; the process is both chemo- and regioselective wherein 2 Isolated yield after chromatography on Si®Determined by chiral
conjugate addition is preferred over 1,2-addition, and in doing S0, 15| & afrer aduCtion of the aldeh?/dg(syee Siior detaﬂQ,O’-(R)}f(l,:l.’-
expands the use of chiral dienes as ligands for transition nfetals. Dinaphthyl-2,2-diyl)-N,N-di-i-propylphosphoramidite.

The use of chiral dienes as ligands has recently been applied to
the asymmetric conjugate addition of arylboronic acids to a selection isolated in 43% yield and 47% ee along witt5% of the product
of electron-poor olefing® This follows in the footsteps of the  resulting from 1,2-addition (path) (Table 1, entry 1). A modest
excellent work involving conjugate addition reactions of boronic increase to 60% ee was observed with Bn-substituted lig4edtry
acids to unsaturated esters, ketones, and lactones using—Rh(l) 2). When phenyl was replaced with isobutyl, a significant ampli-
phosphine complexesThe general, reliable conjugate addition to fication in the enantioselectivity to 83% ee was observed with ligand
unsaturated aldehydes is notably absent from this listing. In fact, 8 (entry 3). The use of ligan8,:2 a hybrid of7 and8, afforded the
there have been only two reports of additions of arylboronic acids desired product in 92% ee. In each case (entried)Llwe were
to unsaturated aldehydes by Miyaura; however, the products areable to recover approximately 10% of cinnamaldehyde along with
either achirdl or obtained in modest yield (3-alkyl-3-arylpropanl). 20—25% of the corresponding double addition prodwcthenc).
In contrast, the Rh(l)-catalyzed 1,2-addition of arylboronic acids This observation is consistent with the greater propensity of the
to aldehydes to give benzylic alcohols has been studied exten-system to undergo conjugate addition than 1,2-addition. It also
sively 21112 This precedence indicates that a serious complication provided us with further impetus to study the reaction with the aim
could arise in developing a general conjugate addition reaction to of precluding 1,2-addition tdO0.
unsaturated aldehydes (Figure 1). Any effort could be thwarted by  In further investigations to optimize yield which had at this point
1,2-addition either in competition with 1,4-additicen\(s b) or after been in the range of 4360%, we observed that the use of alcohol
the formation of3 (a thenc) to give 5. solvents had a dramatic influence on the outcome of the reaction.

The addition of 4-methoxybenzeneboronic acid to cinnamalde- Thus, in a mixture of 10:1 MeOHA® when the reaction was
hyde was used as a test reaction to optimize enantioselectivity viaconducted with ligan@®, the desired aldehydEO could be isolated
systematic variation of the pseud-symmetric ligand scaffold in 80% vyield and 92% ee (entry &).1t is worthy of note that
(Table 1)72In the presence of the parent ligadadduct10 was phosphorus-based ligands such as a phosphorathigite BINAP
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Table 2. Conjugate Addition Reactions Catalyzed by Rh(1)-9 90% yield and 89-93% ee from readily available arylboronic acids
9 (3.3 mol%) and substituted cinnamaldehydes. The successful fine-tuning of the
[Rh(C2H4)2Cl]5 (3.0 mol% Rh) enantioselectivity in this process was made possible by our modular
Ar°B(OH); (1.2-2 equiv) Ar? synthesis of bicyclo[2.2.2]octadiene ligands beginning with natural
At CHO KOH(0Sequv) Ar1)\/CHO carvone. In addition, this approach offers a tactical advantage over
MeOH/H20 (10:1) existing methodology in that electron-poor nucleophiles function
0 i . . . . .
50 °C, 75 min with efficiency equal to that of their electron-rich counterparts. In
entry cnal ArB(OH), ylel(jl ce (%) a broader sense, the study demonstrates the ability to tune reaction
(%) parameters such as chemo- (unsaturated versus saturated aldehyde)
1 o\ CHO /©/ BOM: %0 0 and regioselectivity (1,4 versus 1,2) by diene ligands in conjunction
MeO with reaction media, which may have additional wide applications
) ©/B<0H)z % 0 in other processes involving this novel class of catalysts.
F BOH) Acknowledgment. This research is supported by a Swiss
2 . . . .
5 " - 9 National Science Foundation Grant and by the ETHZ. J.-F.P. is
¢ grateful to the National Sciences and Engineering Research Council
O .
B(OH), of Canada (NSERC) for a postdoctoral fellowship.
4 Q/ 70 89 Supporting Information Available: General experimental proce-
COMe dures, specific details for representative reactions, and isolation and
B(OH), spectroscopic information for the new compounds prepared. This
5 ©/ 85 90 material is available free of charge via the Internet at http://pubs.acs.org.
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